100=10x^2+10x^2

Simple and best practice solution for 100=10x^2+10x^2 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 100=10x^2+10x^2 equation:



100=10x^2+10x^2
We move all terms to the left:
100-(10x^2+10x^2)=0
We get rid of parentheses
-10x^2-10x^2+100=0
We add all the numbers together, and all the variables
-20x^2+100=0
a = -20; b = 0; c = +100;
Δ = b2-4ac
Δ = 02-4·(-20)·100
Δ = 8000
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{8000}=\sqrt{1600*5}=\sqrt{1600}*\sqrt{5}=40\sqrt{5}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-40\sqrt{5}}{2*-20}=\frac{0-40\sqrt{5}}{-40} =-\frac{40\sqrt{5}}{-40} =-\frac{\sqrt{5}}{-1} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+40\sqrt{5}}{2*-20}=\frac{0+40\sqrt{5}}{-40} =\frac{40\sqrt{5}}{-40} =\frac{\sqrt{5}}{-1} $

See similar equations:

| s+-19=-1 | | ?x?=0.4 | | 3/8=b/800 | | -5x+3x-8=7-9x+6 | | 55+35+4x+18=180 | | (85x-0.5x^2)-(45x+300)=15000 | | a=2a2-1 | | 4.9=h–2.6 | | 180-5x+63=7x | | 3x−1=−10 | | 6m+14=-4 | | 2w2+2w-4=0 | | 5x-42=18-x | | g(-4)=5-2 | | 52+76+9x+7=180 | | 41/33-1/6x4/11=2 | | 6y=5+13 | | 1.25x+6=2x | | 9.76d-(12.81d)=8.54 | | c=-12+1/5 | | (2-4x)8=-3x+2 | | -2(x-8+4x=-12 | | -4x=5-2 | | 2/3×6a=7.4 | | 6y-15=30 | | 2(10z+4)=68 | | -20/9x8/3=-13/4x-53/6 | | 2(-7-4x)=-2(9+9x) | | x+6÷13=2 | | 2(x-4)=½(5-3x) | | 7/9v+7.1=-8.7 | | .65x+4.99=-6.94 |

Equations solver categories